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Querying Semi-Structured DataSerge Abiteboul?INRIA-RocquencourtSerge.Abiteboul@inria.fr1 IntroductionThe amount of data of all kinds available electronically has increased dramat-ically in recent years. The data resides in di�erent forms, ranging from un-structured data in �le systems to highly structured in relational database sys-tems. Data is accessible through a variety of interfaces including Web browsers,database query languages, application-speci�c interfaces, or data exchange for-mats. Some of this data is raw data, e.g., images or sound. Some of it has struc-ture even if the structure is often implicit, and not as rigid or regular as thatfound in standard database systems. Sometimes the structure exists but has tobe extracted from the data. Sometimes also it exists but we prefer to ignore it forcertain purposes such as browsing. We call here semi-structured data this datathat is (from a particular viewpoint) neither raw data nor strictly typed, i.e., nottable-oriented as in a relational model or sorted-graph as in object databases.As will seen later when the notion of semi-structured data is more preciselyde�ned, the need for semi-structured data arises naturally in the context of dataintegration, even when the data sources are themselves well-structured. Althoughdata integration is an old topic, the need to integrate a wider variety of data-formats (e.g., SGML or ASN.1 data) and data found on the Web has broughtthe topic of semi-structured data to the forefront of research.The main purpose of the paper is to isolate the essential aspects of semi-structured data. We also survey some proposals of models and query languagesfor semi-structured data. In particular, we consider recent works at Stanford U.and U. Penn on semi-structured data. In both cases, the motivation is found inthe integration of heterogeneous data. The \lightweight" data models they use(based on labelled graphs) are very similar.As we shall see, the topic of semi-structured data has no precise boundary.Furthermore, a theory of semi-structured data is still missing. We will try tohighlight some important issues in this context.The paper is organized as follows. In Section 2, we discuss the particularitiesof semi-structured data. In Section 3, we consider the issue of the data structureand in Section 4, the issue of the query language.? Currently visiting the Computer Science Dept., Stanford U. Work supported in partby CESDIS, NASA Goddard Space Flight Center; by the Air Force Wright Labora-tory Aeronautical Systems Center under ARPA Contract F33615-93-1-1339, and bythe Air Force Rome Laboratories under ARPA Contract F30602-95-C-0119.
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2 Semi-Structured DataIn this section, we make more precise what we mean by semi-structured data,how such data arises, and emphasize its main aspects.Roughly speaking, semi-structured data is data that is neither raw data, norvery strictly typed as in conventional database systems. Clearly, this de�nitionis imprecise. For instance, would a BibTex �le be considered structured or semi-structured? Indeed, the same piece of information may be viewed as unstructuredat some early processing stage, but later become very structured after someanalysis has been performed. In this section, we give examples of semi-structureddata, make more precise this notion and describe important issues in this context.2.1 ExamplesWe will often discuss in this paper BibTex �les [Lam94] that present the ad-vantage of being more familiar to researchers than other well-accepted formatssuch as SGML [ISO86] or ASN.1 [ISO87]. Data in BibTex �les closely resemblesrelational data. Such a �le is composed of records. But, the structure is not asregular. Some �elds may be missing. (Indeed, it is customary to even �nd com-pulsory �elds missing.) Other �elds have some meaningful structure, e.g., author.There are complex features such as abbreviations or cross references that are noteasy to describe in some database systems.The Web also provides numerous popular examples of semi-structured data.In the Web, data consists of �les in a particular format, HTML, with some struc-turing primitives such as tags and anchors. A typical example is a data sourceabout restaurants in the Bay Area (from the Palo Alto Weekly newspaper), thatwe will call Guide. It consists of an HTML �le with one entry per restaurantand provides some information on prices, addresses, styles of restaurants andreviews. Data in Guide resides in �les of text with some implicit structure. Onecan write a parser to extract the underlying structure. However, there is a largedegree of irregularity in the structure since (i) restaurants are not all treated ina uniform manner (e.g., much less information is given for fast-food joints) and(ii) information is entered as plain text by human beings that do not present thestandard rigidity of your favorite data loader. Therefore, the parser will have tobe tolerant and accept to fail parsing portions of text that will remain as plaintext.Also, semi-structured data arises often when integrating several (possiblystructured) sources. Data integration of independent sources has been a populartopic of research since the very early days of databases. (Surveys can be found in[SL90, LMR90, Bre90], and more recent work on the integration of heterogeneoussources in e.g., [LRO96, QRS+95, C+95].) It has gained a new vigor with therecent popularity of the Web. Consider the integration of car retailer databases.Some retailers will represent addresses as strings and others as tuples. Retailerswill probably use di�erent conventions for representing dates, prices, invoices,etc. We should expect some information to be missing from some sources. (E.g.,some retailers may not record whether non-automatic transmission is available).More generally, a wide heterogeneity in the organization of data should be ex-pected from the car retailer data sources and not all can be resolved by theintegration software.Semi-structured data arises under a variety of forms for a wide range of appli-cations such as genome databases, scienti�c databases, libraries of programs and
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more generally, digital libraries, on-line documentations, electronic commerce. Itis thus essential to better understand the issue of querying semi-structured data.2.2 Main aspectsThe structure is irregular:This must be clear from the previous discussion. In many of these applications,the large collections that are maintained often consist of heterogeneous elements.Some elements may be incomplete. On the other hand, other elements may recordextra information, e.g., annotations. Di�erent types may be used for the samekind of information, e.g., prices may be in dollars in portions of the databaseand in francs in others. The same piece of information. e.g., an address, may bestructured in some places as a string and in others as a tuple.Modelling and querying such irregular structures are essential issues.The structure is implicit:In many applications, although a precise structuring exists, it is given implicitly.For instance, electronic documents consist often of a text and a grammar (e.g., aDTD in SGML). The parsing of the document then allows one to isolate pieces ofinformation and detect relationships between them. However, the interpretationof these relationships (e.g., SGML exceptions) may be beyond the capabilities ofstandard database models and are left to the particular applications and speci�ctools. We view this structure as implicit (although speci�ed explicitly by tags)since (i) some computation is required to obtain it (e.g., parsing) and (ii) thecorrespondence between the parse-tree and the logical representation of the datais not always immediate.It is also sometimes the case, in particular for the Web, that the documentscome as plain text. Some ad-hoc analysis is then needed to extract the structure.For instance, in the Guide data source, the description of restaurant is in plaintext. Now, clearly, it is possible to develop some analysis tools to recognize prices,addresses, etc. and then extract the structure of the �le. The issue of extractingthe structure of some text (e.g., HTML) is a challenging issue.The structure is partial:To completely structure the data often remains an elusive goal. Parts of the datamay lack structure (e.g., bitmaps); other parts may only unveil some very sketchystructure (e.g., unstructured text). Information retrieval tools may provide alimited form of structure, e.g., by computing occurrences of particular words orgroup of words and by classifying documents based on their content.An application may also decide to leave large quantities of data outside thedatabase. This data then remains unstructured from a database viewpoint. Theloading of this external data, its analysis, and its integration to the database haveto be performed e�ciently. We may want to also use optimization techniques toonly load selective portions of this data, in the style of [ACM93]. In general, themanagement and access of this external data and its interoperability with thedata from the database is an important issue.Indicative structure vs. constraining structure:In standard database applications, a strict typing policy is enforced to protectdata. We are concerned here with applications where such strict policy is oftenviewed as too constraining. Consider for instance the Web. A person developinga personal Web site would be reluctant to accept strict typing restrictions.In the context of the Lore Project at Stanford, the term data guide wasadopted to emphasize non-conventional approaches to typing found in most semi-
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structured data applications. A schema (as in conventional databases) describesa strict type that is adhered to by all data managed by the system. An updatenot conforming is simply rejected. On the other hand, a data guide provides someinformation about the current type of the data. It does not have to be the mostaccurate. (Accuracy may be traded in for simplicity.) All new data is accepted,eventually at the cost of modifying the data guide.A-priori schema vs. a-posteriori data guide:Traditional database systems are based on the hypothesis of a �xed schema thathas to be de�ned prior to introducing any data. This is not the case for semi-structured data where the notion of schema is often posterior to the existenceof data.Continuing with the Web example, when all the members of an organizationhave a Web page, there is usually some pressure to unify the style of thesehome-pages, or at least agree on some minimal structure to facilitate the designof global entry-points. Indeed, it is a general pattern for large Web sources tostart with a very loose structure and then acquire some structure when the needfor it is felt.Further on, we will briey mention issues concerning data guides.The schema is very large:Often as a consequence of heterogeneity, the schema would typically be quitelarge. This is in contrast with relational databases where the schema was ex-pected to be orders of magnitude smaller than the data. For instance, supposethat we are interested in Californian Impressionist Painters. We may �nd somedata about these painters in many heterogeneous information sources on theWeb, so the schema is probably quite large. But the data itself is not so large.Note that as a consequence, the user is not expected to know all the details ofthe schema. Thus, queries over the schema are as important as standard queriesover the data. Indeed, one cannot separate anymore these two aspects of queries.The schema is ignored:Typically, it is useful to ignore the schema for some queries that have more of adiscovery nature. Such queries may consist in simply browsing through the dataor searching for some string or pattern without any precise indication on where itmay occur. Such searching or browsing are typically not possible with SQL-likelanguages. They pose new challenges: (i) the extension of the query languages;and (ii) the integration of new optimization techniques such as full-text indexing[ACC+96] or evaluation of generalized path expressions [CCM96].The schema is rapidly evolving:In standard database systems, the schema is viewed as almost immutable, schemaupdates as rare, and it is well-accepted that schema updates are very expensive.Now, in contrast, consider the case of genome data [DOB95]. The schema isexpected to change quite rapidly, at the same speed as experimental techniquesare improved or novel techniques introduced. As a consequence, expressive for-mats such as ASN.1 or ACeDB [TMD92] were preferred to a relational or objectdatabase system approach. Indeed, the fact that schema evolves very rapidly isoften given as the reason for not using database systems in applications that aremanaging large quantities of data. (Other reasons include the cost of databasesystems and the interoperability with other systems, e.g., Fortran libraries.)In the context of semi-structured data, we have to assume that the schema isvery exible and can be updated as easily as data which poses serious challengesto database technology.The type of data elements is eclectic:
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Another aspect of semi-structured data is that the structure of a data elementmay depend on a point of view or on a particular phase in the data acquisitionprocess. So, the type of a piece of information has to be more eclectic as, say instandard database systems where the structure of a record or that of an objectis very precise. For instance, an object can be �rst a �le. It may become aBibTex �le after classi�cation using a tool in the style of [TPL95]. It may thenobtain owner, creation-date, and other �elds after some information extractionphase. Finally, it could become a collection of reference objects (with complexstructures) once it has been parsed. In that respect also, the notion of type ismuch more exible.This is an issue of objects with multiple roles, e.g., [ABGO93] and objects inviews, e.g., [dSAD94].The distinction between schema and data is blurred:In standard database applications, a basic principle is the distinction betweenthe schema (that describes the structure of the database) and data (the databaseinstance). We already saw that many di�erences between schema and data disap-pear in the context of semi-structured data: schema updates are frequent, schemalaws can be violated, the schema may be very large, the same queries/updatesmay address both the data and schema. Furthermore, in the context of semi-structured data, this distinction may even logically make little sense. For in-stance, the same classi�cation information, e.g., the sex of a person, may bekept as data in one source (a boolean with true for male and false for female)and as type in the other (the object is of class Male or Female). We are touchinghere issues that dramatically complicate database design and data restructuring.2.3 Some issuesTo conclude this section, we consider a little more precisely important issues inthe context of semi-structured data.Model and languages for semi-structured data:Which model should be used to describe semi-structured data and to manipu-late this data? By languages, we mean here languages to query semi-structureddata but also languages to restructure such data since restructuring is essen-tial for instance to integrate data coming from several sources. There are twomain di�culties (i) we have only a partial knowledge of the structure; and (ii)the structure is potentially \deeply nested" or even cyclic. This second pointin particular defeats calculi and algebras developed in the standard databasecontext (e.g., relational, complex value algebra) by requiring recursion. It seemsthat languages such as Datalog (see [Ull89, AHV94]) although they provide someform of recursion, are not completely satisfactory.These issues will be dealt with in more details in the next two sections.Extracting and using structure:The general idea is, starting with data with little explicit structure, to extractstructuring information and organize the data to improve performance. To con-tinue with the bibliography example, suppose we have a number of �les con-taining bibliography references in BibTex and other formats. We may want toextract (in a data warehousing style) the titles of the papers, lists of authorsand keywords, i.e., the most frequently accessed data that can be found in everyformat for references, and store them in a relational database. Note that thisextraction phase may be di�cult if some �les are structured according to for-mats ignored by our system. Also, issues such as duplicate elimination have to
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be faced. In general, the issue of recognizing an object in a particular state orwithin a sequence of states (for temporal data) is a challenging issue.The relational database then contains links to pieces of information in the�les, so that all data remains accessible. Such a structured layer on top of a irreg-ular and less controlled layer of �les, can provide important gains in answeringthe most common queries.In general, we need tools to extract information from �les including classi-�ers, parsers, but also software to extract cross references (e.g., within a set ofHTML documents), information retrieval packages to obtain statistics on words(or groups of words) occurrences and statistics for relevance ranking and rele-vance feedback. More generally, one could envision the use of general purposedata mining tools to extract structuring information.One can then use the information extracted from the �les to build a struc-tured layer above the layer of more unformed data. This structured layer ref-erences the lower data layer and yields a exible and e�cient access to the in-formation in the lower layer to provide the bene�ts of standard database accessmethods. A similar concept is called structured map in [DMRA96].More ways to use structure: the data guideWe saw that many di�erences with standard databases come from a very di�er-ent approach to typing. We used the term data guide to stress the di�erences.A similar notion is considered in [BDFS97]. Now, since there is no schema toview as a constraint on the data, one may question the need for any kind oftyping information, and for a data guide in particular. A data guide provides acomputed loose description of the structure of data. For instance, in a particularapplication, the data guide may say that persons possibly have ougoing edgeslabelled name, address, hobby and friend, that an address is either a string,but that it may have outgoing edges labelled street, and zipcode. This should beviewed as more or less accurate indications on the kind of data that is in thedatabase at the moment.It turns out that there are many reasons for using a data guide:1. graphical query language: Graphical interfaces use the schema in very es-sential ways. For instance, QBE [Zlo77] would present a query frame thatconsists of the names of relations and their attributes. In the context of semi-structured data, one can view the data guide as an \encompassing type" thatwould serve the role of a type in helping the user graphically express queriesor browse through the data.2. cooperative answer: Consider for instance the mistyping of a label. This willprobably result in a type error in a traditional database system, but not heresince strict type enforcement is abandoned. Using a data guide, the systemmay still explain why the answer is empty (because such label is absent fromthe database.3. query optimization: Typing information is very useful for query optimization.Even when the structure is not rigid, some knowledge about the type (e.g.,presence/absence of some attributes) can prove to be essential. For instance,if the query asks for the Latex sources of some documents and the dataguides indicate that some sources do not provide Latex sources, then a callto these sources can be avoided. This is also a place where the system has toshow some exibility. One of the sources may be a very structured database(e.g., relational), and the system should take advantage of that structure.The notion of the data guide associated to some particular data with vari-
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ous degrees of accuracy, its use for expressing and evaluating queries, and itsmaintenance, are important directions of research.System issues:Although this is not the main focus of the paper, we would like to briey listsome system issues. We already mentioned the need for new query optimizationtechniques, and for the integration of optimization techniques from various �elds(e.g., database indexes and full text indexes). Some standard database systemissues such as transaction management, concurrency control or error recoveryhave to be reconsidered, in particular, because the notion of \data item" becomesless clear: the same piece of data may have several representations in variousparts of the system, some atomic, some complex. Physical design (in particularclustering) is seriously altered in this context. Finally, it should be observed that,by nature, a lot of the data will reside outside the database. The optimizationof external data access (in particular, the e�cient and selective loading of �ledata) and the interoperability with other systems are therefore key issues.3 Modeling Semi-Structured DataA �rst fundamental issue is the choice of a model: should it be very rich andcomplex, or on the contrary, simple and lightweight? We will argue here that itshould be both.Why a lightweight model? Consider accessing data over the Internet. If weobtain new data using the Web protocol, the data will be rather unstructuredat �rst. (Some protocols such as CORBA [OMG92] may provide a-priori morestructured data.) Furthermore, if the data originates from a new source thatwe just discovered, it is very likely that it is structured in ways that are stillunknown to our particular systems. This is because (i) the number of semanticconstructs developers and researchers may possibly invent is extremely large and(ii) the standardization of a complex data model that will encompass the needsof all applications seems beyond reach.For such novel structures discovered over the network, a lightweight datamodel is preferable. Any data can be mapped to this exchange model, and be-comes therefore accessible without the use of speci�c pieces of software.Why also a heavyweight data model? Using a lightweight model does notpreclude the use of a compatible, richer model that allows the system to takeadvantage of particular structuring information. For instance, traditional rela-tions with indexes will be often imported. When using such an indexed relation,ignoring the fact that this particular data is a relation and that it is indexedwould be suicidal for performance.As we mentioned in the previous section, the types of objects evolve based onour current knowledge possibly from totally unstructured to very structured, anda piece of information will often move from a very rich structure (in the systemwhere it is maintained); to a lightweight structure when exchanged over thenetwork; to a (possibly di�erent) very rich structure when it has been analyzedand integrated to other pieces of information. It is thus important to dispose ofa exible model allowing both a very light and a very rich structuring of data.In this section, we �rst briey consider some components of a rich model forsemi-structured data. This should be viewed as an indicative, non-exhaustivelist of candidate features. In our opinion, speci�c models for speci�c application
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domains (e.g., Web databases or genome databases) are probably more feasiblethan an all-purpose model for semi-structured data. Then, we present in moredetails the Object Exchange Model that is pursuing a minimalist approach.3.1 A maximalist approachWe next describe primitives that seem to be required from a semantic model toallow the description of semi-structured data. Our presentation is rather sketchyand assumes knowledge of the ODMG model. The following primitives shouldbe considered:1. The ODMG model: the notions of objects, classes and class hierarchy; andstructuring constructs such as set, list, bag, array seem all needed in ourcontext.2. Null values: these are given lip service in the relational and the ODMGmodels and more is needed here.3. Heterogeneous collections: collections need often to be heterogeneous in thesemi-structured setting. So, there is the need for some union types as foundfor instance in [AH87] or [AK89].4. Text with references: text is an important component for semi-structuredinformation. Two important issues are (i) references to portions of a text(references and citations in LaTex), and (ii) references from the text (HTMLanchors).5. Eclectic types: the same piece of information may be viewed with variousalternative structures.6. Version and time: it is clear that we are often more concerned by queryingthe recent changes in some data source that in examining the entire source.No matter how rich a model we choose, it is likely that some weird featuresof a given application or a particular data exchange format will not be covered(e.g., SGML exceptions). This motivates the use of an underlying minimalistdata format.3.2 A minimalist approachIn this section, we present the Object Exchange Model (OEM) [AQM+96], adata model particularly useful for representing semi-structured data.The model consists of graph with labels on the edges. (In an early versionof the model [PGMW95], labels were attached to vertices which leads to minordi�erences in the description of information and in the corresponding querylanguages.) A very similar model was independently proposed in [BDHS96]. Thisseems to indicate that this model indeed achieves the goals to be simple enough,and yet exible and powerful enough to allow describing semi-structured datafound in common data sources over the net. A subtle di�erence is that OEM isbased on the notion of objects with object identity whereas [BDHS96] uses treemarkers and bisimulation. We will ignore this distinction here.Data represented in OEM can be thought of as a graph, with objects as thevertices and labels on the edges. Entities are represented by objects. Each objecthas a unique object identi�er (oid) from the type oid. Some objects are atomicand contain a value from one of the disjoint basic atomic types, e.g., integer,real, string, gif, html, audio, java, etc. All other objects are complex; theirvalue is a set of object references, denoted as a set of (label; oid) pairs. The
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labels are taken from the atomic type string. Figure 1 provides an example ofan OEM graph.OEM can easily model relational data, and, as in the ODMG model, hier-archical and graph data. (Although the structure in Figure 1 is almost a tree,there is a cycle via objects &19 and &35.) To model semi-structured informa-tion sources, we do not insist that data is as strongly structured as in standarddatabase models. Observe that, for example, (i) restaurants have zero, one ormore addresses; (ii) an address is sometimes a string and sometimes a complexstructure; (iii) a zipcode may be a string or an integer; (iv) the zipcode occursin the address for some and directly under restaurant for others; and (v) priceinformation is sometimes given and sometimes missing.
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gourmet    Chef Chu Fig. 1. An OEM graphWe conclude this section with two observations relating OEM to the relationaland ODMG models:OEM vs. relational:One can view an OEM database as a relational structurewith a binary relation VAL(oid, atomic value) for specifying the values ofatomic objects and a ternary relationMEMBER(oid, label, oid) to specify thevalues of complex objects. This simple viewpoint seems to defeat a large partof the research on semi-structured data. However, (i) such a representation ispossible only because of the presence of object identi�ers, so we are alreadyout of the relational model; (ii) we have to add integrity constraints to therelational structure (e.g., to prohibit dangling references); and (iii) it is oftenthe case that we want to recover an object together with its subcomponentsand this recursively, which is certainly a feature that is out of relationalcalculus.OEM vs. ODMG: In the object exchange model, all objects have the sametype, namely OEM. Intuitively, this type is a tuple with one �eld per possiblelabel containing a set of OEM's. Based on this, it is rather straightforwardto have a type system that would incorporate the ODMG types and the
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OEM type (see [AQM+96]). This is a �rst step towards a model that wouldintegrate the minimalist and maximalist approaches.4 Querying and RestructuringIn the context of semi-structured data, the query language has to be more exiblethan in conventional database systems. Typing should be more liberal since bynature data is less regular. What should we expect from a query language?1. standard database-style query primitives;2. navigation in the style of hypertext or Web-style browsing;3. searching for pattern in an information-retrieval-style [Rie79];4. temporal queries, including querying versions or querying changes (an issuethat we will ignore further on);5. querying both the data and the type/schema in the same query as in [KL89].Also, the language should have sound theoretical foundations, possibly a logicin the style of relational calculus. So, there is a need for more works on calculifor semi-structured data and algebraizations of these calculi.All this requires not only revisiting the languages but also database opti-mization techniques, and in particular, integrating these techniques with op-timization techniques from information retrieval (e.g., full text indexing) andnew techniques for dealing with path expressions and more general hypertextfeatures.There has been a very important body of literature on query languages fromvarious perspectives, calculus, algebra, functional, and deductive (see [Ull89,AHV94]), concerning very structured data. A number of more recent proposalsconcern directly semi-structured data. These are most notably Lorel [AQM+96]for the OEM model and UnQL [BDHS96] for a very similar model. Althoughdeveloped with di�erent motivations, languages to query documents satisfy someof the needs of querying semi-structured data. For instance, query languages forstructured documents such as OQL-doc [CACS94] and integration with infor-mation retrieval tools [ACC+96, CM95] share many goals with the issues thatwe are considering. The work on query languages for hypertext structures, e.g.,[MW95, BK90, CM89b, MW93] and query languages for the Web are relevant.In particular, query languages for the Web have attracted a lot of attentionrecently, e.g., W3QL [KS95] that focuses on extensibility, WebSQL [MMM96]that provides a formal semantics and introduce a notion of locality, or WebLog[LSS96] that is based on a Datalog-like syntax. A theory of queries of the Webis proposed in [AV97].W3QL is typical from this line of works. It notably allows the use of Perlregular expressions and calls to Unix programs from the where clause of an SQL-like query, and even calls to Web browsers. This is the basis of a system thatprovides bridges between the database and the Web technology.We do not provide here an extensive survey of that literature. We moremodestly focus on some concepts that we believe are essential to query semi-structured data. This is considered next. Finally, we mention the issue of datarestructuring.4.1 Primitives for querying semi-structured dataIn this section, we mention some recent proposals for querying semi-structureddata.
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Using an object approach: The notion of objects and the exibility broughtby an object approach turn out to be essential. Objects allow to focus on theportion of the structure that is relevant to the query and ignore portions of itthat we (want to) ignore.To see that, consider �rst the relational representation of OEM that wasdescribed in Section 3.2 and relational query languages. We can express simplequeries such as what is the address of Toto? even when we ignore the exactstructure of person objects, or even if all persons do not have the same structure:select unique V'.2from persons P, MEMBER N, MEMBER A, VAL V, VAL V'where P = N.1 and P = A.1 andN.2 = "name" and N.3 = V.1 and V.2 = "Toto" andA.2 = "address" and A.3 = V'.1assuming a unary relation persons contains the oid's of all persons. Observe thatthis is only assuming that persons have names and addresses.In this manner, we can query semi-structured data with almost no knowledgeon the underlying structure using the standard relational model. However, theexpression of the query is rather awkward. Furthermore, this representation ofthe data results in losing the \logical clustering" of data. The description of anobject (a tuple or a collection) is split into pieces, one triplet for each component.A more natural way to express the same query is:Q1 select A from persons P, P.address Awhere "Toto" = P.nameThis is actually the correct OQL syntax; but OQL would require persons to bean homogeneous set of objects, �tting the ODMG model. On the other hand,Lorel (based on OEM) would impose no restriction on the types of objects inthe persons set and Q1 is also a correct Lorel query. In OEM, persons object willbe allowed to have zero, one or more names and addresses. Of course, the Lorelquery Q1 will retrieve only persons with a name and an address. Lorel achievesthis by an extensive use of coercion.Using coercion: A simple example of coercion is found with atomic values.Some source may record a distance in kilometers and some in miles. The systemcan still perform comparison using coercion from one measure to the other. Forinstance, a comparison X < Y where X is in kilometer and Y in miles is coercedinto X < mile to km(Y ).The same idea of coercion can be used for structure as well. Since we canneither assume regularity nor precise knowledge of the structure, the name oraddress of a person may be atomic in some source, a set in other sources, and notbe recorded by a third. Lorel allows one to use Q1 even in such cases. This is doneby �rst assuming that all properties are set-valued. The empty set (denoting theabsence of this property) and the singleton set (denoting a functional property)are simply special cases. The query Q1 is then transformed by coercing theequality in P.Name = "Toto" into a set membership "Toto" in P.Name.So, the principle is to use a data model where all objects have the sameinterface and allow a lot of exibility in queries. Indeed, in Lorel, all objectshave the same type, OEM.
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Path expressions and Patterns: The simplest use of path expressions is toconcatenate attribute names as in \Guide.restaurant.address.zipcode". If Guideis a tuple, with a restaurant �eld that has an address �eld, that has a zipcode�eld, this is pure �eld extraction. But if some properties are set-valued (or allare set-valued as for OEM), we are in fact doing much more. We are traversingcollections and attening them. This is providing a powerful form of navigationin the database graph. Note that now such a path expression can be interpretedin two ways: (i) as the set of objects at the end of the paths; and (ii) as thepaths themselves. Languages such as OQL-doc [CACS94] consider paths as �rstclass citizen and even allow the use of path variables that range over concretepaths in the data graph.Such simple path expressions can be viewed as a form of browsing. Alter-natively, they can be viewed as specifying certain line patterns that have tobe found in the data graph. One could also consider non-line patterns such asperson f name , ss# g, possibly with variables in the style of the psi-terms[AKP93].Extended path expressions:The notion of path expression takes its fullpower when we start using it in conjunction with wild cards or path variables.Intuitively, a sequence of labels describes a directed path in the data graph, or acollection of paths (because of set-valued properties). If we consider a regular ex-pression of the alphabet of labels, it describes a (possibly in�nite) set of words, soagain a set of paths, i.e., the union of the paths described by each word. Indeed,this provides an alternative (much more powerful way) of describing paths.Furthermore, recall that labels are string, so they are themselves sequencesof characters. So we can use also regular expressions to describe labels. This isposing some minor syntactic problems since we need to distinguish between theregular expressions for the sequence of labels and for the sequence of charactersfor each label. The approach taken in Lorel is based on \wild cards". We brieydiscuss it next.To take again an example from Lorel, suppose we want to �nd the names andzipcodes of all \cheap" restaurants. Suppose we don't know whether the zipcodeoccurs as part of an address or directly as subobject of restaurants. Also, we donot know if the string \cheap" will be part of a category, price, description, orother subobject. We are still able to ask the query as follows:select R.name, R(.address)?.zipcodefrom Guide.restaurant Rwhere R.% grep "cheap"The \?" after :address means that the address is optional in the path expression.The wild-card \%" will match any label leading a subobject of restaurant. Thecomparison operator grepwill return true if the string \cheap" appears anywherein that subobject value. There is no equivalent query in SQL or OQL, sinceneither allow regular expressions or wild-cards.This last example seems again amenable to a relational calculus translationalthough the use of a number of % wildcards may lead to some very intricaterelational calculus equivalent, and so would the introduction of disjunction. Notethat the Kleene closure in label sequences built in path expressions in [AQM+96]and OQL-doc [CACS94] takes immediately out of �rst order. For instance, con-sider the following Lorel query:select t from MyReport.#.title t
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where \#" is a shorthand for for a sequence of arbitrary many labels. Thisreturns the title of my report, but also the titles of the section, subsections, etc.,no matter how deeply nested.The notion of path expression is found �rst in [MBW80] and more recently,for instance, in [KKS92, CACS94, AQM+96]. Extended path expressions is a verypowerful primitive construct that changes the languages in essential ways. Thestudy of path expressions and their expressive power (e.g., compared to Datalog-like languages) is one of the main theoretical issues in the context of semi-structured data. The optimization of the evaluation of extended path expressionsinitiated in [CCM96] is also a challenging problem.Gluing information and rest variables: As mentioned above, a di�culty forlanguages for semi-structured data is that collections are heterogeneous and thatoften the structure of their components is unknown. Returning to the personsexample, we might want to say that we are concerned only with persons havinga name, an address, and possibly other �elds. MSL [PGMW95] uses the notionof rest variables to mention \possibly other �elds" as for instance in:res(name:X, address:Y; REST1) :- r(name:X, address:Y; REST1),Y = (city:"Palo Alto"; REST2)Here r is an collection of heterogeneous tuples. The �rst literal in the body ofthe rule will unify with any tuple with a name and address. The REST1 variablewill unify with the remaining part of the tuple. Observe that this allows �lteringthe tuples in r without having to specify precisely their internal structure.This approach is in the spirit of some works in the functional programmingcommunity to allow dealing with heterogeneous records, e.g, [Wan89, CM89a,Rem91]. One of the main features is the use of extensible records that are thebasis of inheritance for objects as records. However, the situation turns out tobe much simpler in MSL since: (i) there is much less emphasis on typing; and(ii) in particular, it is not assumed that a tuple has at most one l-component fora given label l.Object identity is also used in MSL [PAGM96] to glue information comingfrom possibly heterogeneous various objects. For instance, the following two rulesallow to merge the data from two sources using name as a surrogate:&person(X) ( name:X, ATT:Y ) :- r1 ( name:X, ATT:Y )&person(X) ( name:X, ATT:Y ) :- r2 ( name:X, ATT:Y )Here &person(X) is an object identi�er and ATT is a variable. Intuitively, foreach tuple in r1 (or r2) with a name �eld X, and some ATT �eld Y, the object&person(X) will have an ATT �eld with value Y . Observe the use of objectidentity as a substitute for specifying too precisely the structure. Because ofobject identity, we do not need to use a notion such as REST variable to capturein one rule instantiation all the necessary information.We should observe again that these can be viewed as Datalog extensions thatwere introduced for practical motivations. Theoretical result in this area are stillmissing.4.2 Views and restructuringDatabase languages are traditionally used for extracting data from a database.They also serve to specify views. The notion of view is particularly important
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here since we often want to consider the same object from various perspectives orwith various precisions in its structure (e.g., for the integration of heterogeneousdata). We need to specify complex restructuring operations. The view technologydeveloped for object databases can be considered here, e.g., [dSAD94]. But wedispose of much less structure to start with when de�ning the view and again,arbitrarily deep nesting and cycles pose new challenges.Declarative speci�cation of a view: Following [dSAD94], a view can be de-�ned by specifying the following: (i) how the object population is modi�ed byhiding some objects and creating virtual objects; and how the relationship be-tween objects is modi�ed by hiding and adding edges between objects, or mod-ifying edge labels.A simple approach consists of adding hide/create vertices/edges primitivesto the language and using the core query language to specify the vertices/edgesto hide and create. This would yield a syntax in the style of:define view Salary withhide select P.salary from persons Pwhere P.salary > 100Kvirtual add P.salary := "high" from persons Pwhere P.salary > 100KFor vertex creation one could use a Skolem-based object naming [KKS92].The declarative speci�cation of data restructuring for semi-structured datais also studied in [ACM97].A more procedural approach A di�erent approach is followed in [BDHS96]in the languages UnQL and UnCAL. A �rst layer of UnQL allows one to askqueries and is in the style of other proposals such as OQL-doc or Lorel, e.g.,it uses wild cards. The language is based on a comprehension syntax. Parts ofUnQL are of a declarative avor. On the other hand, we view the restructuringpart as more procedural in essence. This opinion is clearly debatable.A particular aspect of the language is that it allows some form of restruc-turing even for cyclic structures. A traverse construct allows one to transform adatabase graph while traversing it, e.g., by replacing all labels A by the label A0.This powerful operation combines tree rewriting techniques with some controlobtained by a guided traversal of the graph. For instance, one could specify thatthe replacement occurs only if particular edge, say B, is encountered on the wayfrom the root.A lambda calculus for semi-structured data, called UnCAL, is also presentedin [BDHS96] and the equivalence with UnQL is proven. This yields a frameworkfor an (optimized) evaluation of UnQL queries. In particular, it is importantto be able to restructure a graph by local transformations (e.g., if the graphis distributed as it is the case in the Web). The locality of some restructuringoperations is exploited in [Suc96].Acknowledgements This paper has been quite inuenced by discussions on semi-structured data with many people and more particularly with Peter Buneman,Sophie Cluet, Susan Davidson, Tova Milo, Dallan Quass, Yannis Papakonstanti-nou, Victor Vianu and Jennifer Widom.
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